{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Fusion Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Example" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false }, "pycharm": { "name": "#%%\n" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", " | data_image_1 | \n", "data_image_2 | \n", "age | \n", "gender | \n", "subset | \n", "
---|---|---|---|---|---|
0 | \n", "[15.063944284167968, 7.682054964381019, 59.023... | \n", "[0.6938266507355754, 0.33012221842269274, 0.74... | \n", "63 | \n", "F | \n", "TRAIN_VALIDATE | \n", "
1 | \n", "[3.434402959993343, 3.538154489514688, 23.9200... | \n", "[0.5269370477097022, 0.5903021383156715, 0.517... | \n", "45 | \n", "F | \n", "TRAIN_VALIDATE | \n", "
2 | \n", "[2.81218605232154, 0.12835273944489112, 31.237... | \n", "[0.04859035434840109, 0.12056269747039472, 0.8... | \n", "34 | \n", "M | \n", "TRAIN_VALIDATE | \n", "
3 | \n", "[15.861637079166698, 7.165088327887514, 27.786... | \n", "[0.5628110412578916, 0.5864291501407077, 0.679... | \n", "40 | \n", "F | \n", "TRAIN_VALIDATE | \n", "
4 | \n", "[6.950717959847797, 15.698030827427083, 16.615... | \n", "[0.74255727915812, 0.5960530457020161, 0.25688... | \n", "55 | \n", "M | \n", "TRAIN_VALIDATE | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
495 | \n", "[70.61214057454309, 1.8685573666984343, 59.460... | \n", "[0.2039033864463896, 0.3145371848607098, 0.046... | \n", "71 | \n", "M | \n", "TEST | \n", "
496 | \n", "[60.37547452707624, 37.95228651809741, 53.5548... | \n", "[0.18674565141973776, 0.6019158128829427, 0.18... | \n", "64 | \n", "F | \n", "TEST | \n", "
497 | \n", "[32.1526225126884, 33.922010372801886, 24.8319... | \n", "[0.10718371637388646, 0.4830662921155866, 0.69... | \n", "40 | \n", "F | \n", "TEST | \n", "
498 | \n", "[45.90474661033698, 66.17473294569139, 40.4195... | \n", "[0.002235769261409337, 0.6293545349958005, 0.1... | \n", "77 | \n", "F | \n", "TEST | \n", "
499 | \n", "[18.881702811342475, 4.597565571065492, 21.388... | \n", "[0.9938089200338339, 0.14282083382245703, 0.17... | \n", "56 | \n", "F | \n", "TEST | \n", "
500 rows × 5 columns
\n", "StackingRegressor(estimators=[('regressor_data_image_1',\n", " Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_1'),\n", " ('gender_and_site_encoded',\n", " OneHotEnc...\n", " ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_2'),\n", " ('gender_and_site_encoded',\n", " OneHotEncoder(handle_unknown='ignore'),\n", " ['gender'])])),\n", " ('regressor', EMRVR())]))],\n", " final_estimator=LinearRegression())Please rerun this cell to show the HTML repr or trust the notebook.
StackingRegressor(estimators=[('regressor_data_image_1',\n", " Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_1'),\n", " ('gender_and_site_encoded',\n", " OneHotEnc...\n", " ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_2'),\n", " ('gender_and_site_encoded',\n", " OneHotEncoder(handle_unknown='ignore'),\n", " ['gender'])])),\n", " ('regressor', EMRVR())]))],\n", " final_estimator=LinearRegression())
ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_1'),\n", " ('gender_and_site_encoded',\n", " OneHotEncoder(handle_unknown='ignore'),\n", " ['gender'])])
data_image_1
FlattenNestedArray()
PCA(n_components=2, svd_solver='full')
StandardScaler()
['gender']
OneHotEncoder(handle_unknown='ignore')
EMRVR()
ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_2'),\n", " ('gender_and_site_encoded',\n", " OneHotEncoder(handle_unknown='ignore'),\n", " ['gender'])])
data_image_2
FlattenNestedArray()
PCA(n_components=2, svd_solver='full')
StandardScaler()
['gender']
OneHotEncoder(handle_unknown='ignore')
EMRVR()
LinearRegression()