{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Modality Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Example" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", " | data_image_1 | \n", "age | \n", "gender | \n", "subset | \n", "
---|---|---|---|---|
0 | \n", "[45.44638769171786, 4.135743395582088, 65.4992... | \n", "66 | \n", "F | \n", "TRAIN_VALIDATE | \n", "
1 | \n", "[31.103975653537624, 22.742018582560704, 55.72... | \n", "68 | \n", "F | \n", "TRAIN_VALIDATE | \n", "
2 | \n", "[13.763440850143434, 27.696897834132383, 9.673... | \n", "30 | \n", "M | \n", "TRAIN_VALIDATE | \n", "
3 | \n", "[15.53920410329618, 15.91871234560287, 6.62250... | \n", "22 | \n", "F | \n", "TRAIN_VALIDATE | \n", "
4 | \n", "[2.9411769417824285, 3.895413833469064, 14.256... | \n", "18 | \n", "F | \n", "TRAIN_VALIDATE | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
495 | \n", "[31.417769500497954, 18.995660592781746, 22.10... | \n", "64 | \n", "M | \n", "TEST | \n", "
496 | \n", "[43.17352410484374, 1.0359054168446515, 58.802... | \n", "59 | \n", "F | \n", "TEST | \n", "
497 | \n", "[34.34416026557086, 5.521968600916665, 8.75701... | \n", "66 | \n", "F | \n", "TEST | \n", "
498 | \n", "[13.252041660768269, 30.217646004227426, 10.73... | \n", "66 | \n", "F | \n", "TEST | \n", "
499 | \n", "[42.12969225518131, 40.620030729772424, 25.058... | \n", "53 | \n", "F | \n", "TEST | \n", "
500 rows × 4 columns
\n", "Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_1'),\n", " ('gender_and_site_encoded',\n", " OneHotEncoder(handle_unknown='ignore'),\n", " ['gender'])])),\n", " ('regressor', EMRVR())])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('preprocessor',\n", " ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_1'),\n", " ('gender_and_site_encoded',\n", " OneHotEncoder(handle_unknown='ignore'),\n", " ['gender'])])),\n", " ('regressor', EMRVR())])
ColumnTransformer(transformers=[('dimensionality_reduction',\n", " Pipeline(steps=[('flatten',\n", " FlattenNestedArray()),\n", " ('dimensionality_reduction',\n", " PCA(n_components=2,\n", " svd_solver='full')),\n", " ('scaler_pre',\n", " StandardScaler())]),\n", " 'data_image_1'),\n", " ('gender_and_site_encoded',\n", " OneHotEncoder(handle_unknown='ignore'),\n", " ['gender'])])
data_image_1
FlattenNestedArray()
PCA(n_components=2, svd_solver='full')
StandardScaler()
['gender']
OneHotEncoder(handle_unknown='ignore')
EMRVR()