Site and gender effect

Deformation Fields

Component #1

path_csv = file.path(getwd(), "..", "..", "..", "resources", "compressed_images.csv")
data = read.csv(path_csv)

lm_df_comp1 = lm(df_comp_1~age + I(age^2) + site + gender + site*gender, data=data)
summary(lm_df_comp1)
Call:
lm(formula = df_comp_1 ~ age + I(age^2) + site + gender + site * 
    gender, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.6190 -0.3985 -0.0967  0.2983  4.1348 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)     0.0766027  0.2534632   0.302   0.7626    
age            -0.0520514  0.0109098  -4.771 2.35e-06 ***
I(age^2)        0.0009953  0.0001099   9.054  < 2e-16 ***
siteHH         -0.1566780  0.0873679  -1.793   0.0735 .  
siteIOP        -0.0265730  0.1416690  -0.188   0.8513    
gender         -0.3361001  0.0727215  -4.622 4.74e-06 ***
siteHH:gender   0.1816633  0.1196839   1.518   0.1296    
siteIOP:gender  0.3807770  0.1778851   2.141   0.0327 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6362 on 552 degrees of freedom
Multiple R-squared:  0.6082,	Adjusted R-squared:  0.6032 
F-statistic: 122.4 on 7 and 552 DF,  p-value: < 2.2e-16

Component #2

lm_df_comp2 = lm(df_comp_1~age + site + gender + site*gender, data=data)
summary(lm_df_comp2)
Call:
lm(formula = df_comp_1 ~ age + site + gender + site * gender, 
    data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.5013 -0.4496 -0.0745  0.3316  4.4014 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    -2.037535   0.105553 -19.303  < 2e-16 ***
age             0.045561   0.001787  25.490  < 2e-16 ***
siteHH         -0.164925   0.093541  -1.763  0.07843 .  
siteIOP        -0.068357   0.151606  -0.451  0.65225    
gender         -0.377366   0.077711  -4.856 1.56e-06 ***
siteHH:gender   0.234504   0.127995   1.832  0.06747 .  
siteIOP:gender  0.541277   0.189516   2.856  0.00445 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6812 on 553 degrees of freedom
Multiple R-squared:   0.55,	Adjusted R-squared:  0.5451 
F-statistic: 112.7 on 6 and 553 DF,  p-value: < 2.2e-16

Grey Matter

Component #1

lm_gm_comp1 = lm(gm_comp_1~age + site + gender + site*gender, data=data)
summary(lm_gm_comp1)
Call:
lm(formula = gm_comp_1 ~ age + site + gender + site * gender, 
    data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.61115 -0.46160 -0.02664  0.43518  2.16073 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     2.390200   0.099120  24.114  < 2e-16 ***
age            -0.038385   0.001678 -22.869  < 2e-16 ***
siteHH         -0.246503   0.087840  -2.806  0.00519 ** 
siteIOP         0.092864   0.142366   0.652  0.51449    
gender         -0.757023   0.072974 -10.374  < 2e-16 ***
siteHH:gender   0.059455   0.120194   0.495  0.62104    
siteIOP:gender -0.245289   0.177965  -1.378  0.16867    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6397 on 553 degrees of freedom
Multiple R-squared:  0.5945,	Adjusted R-squared:  0.5901 
F-statistic: 135.1 on 6 and 553 DF,  p-value: < 2.2e-16

Component #2

lm_gm_comp2 = lm(gm_comp_2~age + site + gender + site*gender, data=data)
summary(lm_df_comp2)
Call:
lm(formula = df_comp_1 ~ age + site + gender + site * gender, 
    data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.5013 -0.4496 -0.0745  0.3316  4.4014 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    -2.037535   0.105553 -19.303  < 2e-16 ***
age             0.045561   0.001787  25.490  < 2e-16 ***
siteHH         -0.164925   0.093541  -1.763  0.07843 .  
siteIOP        -0.068357   0.151606  -0.451  0.65225    
gender         -0.377366   0.077711  -4.856 1.56e-06 ***
siteHH:gender   0.234504   0.127995   1.832  0.06747 .  
siteIOP:gender  0.541277   0.189516   2.856  0.00445 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6812 on 553 degrees of freedom
Multiple R-squared:   0.55,	Adjusted R-squared:  0.5451 
F-statistic: 112.7 on 6 and 553 DF,  p-value: < 2.2e-16

White Matter

Component #1

lm_wm_comp1 = lm(wm_comp_1~age + site + gender + site*gender, data=data)
summary(lm_wm_comp1)
Call:
lm(formula = wm_comp_1 ~ age + site + gender + site * gender, 
    data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.9136 -0.5502 -0.0414  0.4930  2.8121 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     1.507270   0.124800  12.077   <2e-16 ***
age            -0.018605   0.002113  -8.804   <2e-16 ***
siteHH         -0.142862   0.110597  -1.292    0.197    
siteIOP        -0.273448   0.179251  -1.526    0.128    
gender         -0.977843   0.091881 -10.643   <2e-16 ***
siteHH:gender  -0.023437   0.151333  -0.155    0.877    
siteIOP:gender -0.326990   0.224072  -1.459    0.145    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8054 on 553 degrees of freedom
Multiple R-squared:  0.3862,	Adjusted R-squared:  0.3796 
F-statistic:    58 on 6 and 553 DF,  p-value: < 2.2e-16

Component #2

lm_wm_comp2 = lm(wm_comp_2~age + site + gender + site*gender, data=data)
summary(lm_wm_comp2)
Call:
lm(formula = wm_comp_2 ~ age + site + gender + site * gender, 
    data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0740 -0.4249 -0.0123  0.3878  2.1331 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    -1.162433   0.103781 -11.201  < 2e-16 ***
age             0.033508   0.001757  19.067  < 2e-16 ***
siteHH         -0.921654   0.091970 -10.021  < 2e-16 ***
siteIOP        -0.885226   0.149060  -5.939 5.08e-09 ***
gender         -0.345222   0.076406  -4.518 7.63e-06 ***
siteHH:gender   0.137278   0.125845   1.091   0.2758    
siteIOP:gender  0.350391   0.186333   1.880   0.0606 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6698 on 553 degrees of freedom
Multiple R-squared:  0.5427,	Adjusted R-squared:  0.5377 
F-statistic: 109.4 on 6 and 553 DF,  p-value: < 2.2e-16

CSF

Component #1

lm_csf_comp1 = lm(csf_comp_1~age + site + gender + site*gender, data=data)
summary(lm_csf_comp1)
Call:
lm(formula = csf_comp_1 ~ age + site + gender + site * gender, 
    data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.72847 -0.45810 -0.03332  0.37638  2.73362 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    -1.444718   0.100292 -14.405  < 2e-16 ***
age             0.041228   0.001698  24.276  < 2e-16 ***
siteHH         -0.341589   0.088878  -3.843 0.000135 ***
siteIOP        -0.594116   0.144049  -4.124 4.29e-05 ***
gender         -0.984119   0.073837 -13.328  < 2e-16 ***
siteHH:gender   0.311623   0.121615   2.562 0.010659 *  
siteIOP:gender  0.735561   0.180069   4.085 5.06e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6473 on 553 degrees of freedom
Multiple R-squared:  0.5926,	Adjusted R-squared:  0.5882 
F-statistic:   134 on 6 and 553 DF,  p-value: < 2.2e-16

Component #2

lm_csf_comp2 = lm(wm_comp_2~age + site + gender + site*gender, data=data)
summary(lm_csf_comp2)
Call:
lm(formula = wm_comp_2 ~ age + site + gender + site * gender, 
    data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0740 -0.4249 -0.0123  0.3878  2.1331 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    -1.162433   0.103781 -11.201  < 2e-16 ***
age             0.033508   0.001757  19.067  < 2e-16 ***
siteHH         -0.921654   0.091970 -10.021  < 2e-16 ***
siteIOP        -0.885226   0.149060  -5.939 5.08e-09 ***
gender         -0.345222   0.076406  -4.518 7.63e-06 ***
siteHH:gender   0.137278   0.125845   1.091   0.2758    
siteIOP:gender  0.350391   0.186333   1.880   0.0606 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6698 on 553 degrees of freedom
Multiple R-squared:  0.5427,	Adjusted R-squared:  0.5377 
F-statistic: 109.4 on 6 and 553 DF,  p-value: < 2.2e-16