Modality Model
Contents
Modality Model¶
Data Example¶
from models import ModalityPredictorPCA, MODELTYPE
from generate_random_input import generate_single_image_input
df = generate_single_image_input()
df["subset"] = ["TRAIN_VALIDATE"]*int(df.shape[0]/2) + ["TEST"]*int(df.shape[0]/2)
df
data_image_1 | age | gender | subset | |
---|---|---|---|---|
0 | [22.54336590405338, 3.6299505310085847, 59.530... | 84 | F | TRAIN_VALIDATE |
1 | [41.42289129587462, 46.62117141034676, 5.01415... | 65 | M | TRAIN_VALIDATE |
2 | [70.59916336420935, 2.6271992421071015, 34.160... | 85 | M | TRAIN_VALIDATE |
3 | [5.1157449535190445, 46.86581152125135, 19.037... | 85 | F | TRAIN_VALIDATE |
4 | [42.186657088766026, 20.117513296091072, 43.49... | 62 | M | TRAIN_VALIDATE |
... | ... | ... | ... | ... |
495 | [24.00564283752257, 2.104327866703475, 40.6056... | 59 | M | TEST |
496 | [41.44879378965781, 21.357903569399667, 27.492... | 49 | M | TEST |
497 | [22.983924658062165, 38.09957956813175, 59.286... | 72 | F | TEST |
498 | [23.207607911082036, 50.48990512457886, 54.907... | 57 | M | TEST |
499 | [43.791009886426906, 58.286094273571905, 21.10... | 79 | M | TEST |
500 rows × 4 columns
Model¶
from sklearn import set_config
set_config(display="diagram")
number_components = 2
predictor = ModalityPredictorPCA(df, "data_image_1", MODELTYPE.SINGLE_IMAGE, 5)
model = predictor.get_single_modality_model(number_components, "data_image_1")
model
Pipeline(steps=[('preprocessor', ColumnTransformer(transformers=[('dimensionality_reduction', Pipeline(steps=[('flatten', FlattenNestedArray()), ('dimensionality_reduction', PCA(n_components=2, svd_solver='full')), ('scaler_pre', StandardScaler())]), 'data_image_1'), ('gender_and_site_encoded', OneHotEncoder(handle_unknown='ignore'), ['gender'])])), ('regressor', EMRVR())])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('preprocessor', ColumnTransformer(transformers=[('dimensionality_reduction', Pipeline(steps=[('flatten', FlattenNestedArray()), ('dimensionality_reduction', PCA(n_components=2, svd_solver='full')), ('scaler_pre', StandardScaler())]), 'data_image_1'), ('gender_and_site_encoded', OneHotEncoder(handle_unknown='ignore'), ['gender'])])), ('regressor', EMRVR())])
ColumnTransformer(transformers=[('dimensionality_reduction', Pipeline(steps=[('flatten', FlattenNestedArray()), ('dimensionality_reduction', PCA(n_components=2, svd_solver='full')), ('scaler_pre', StandardScaler())]), 'data_image_1'), ('gender_and_site_encoded', OneHotEncoder(handle_unknown='ignore'), ['gender'])])
data_image_1
FlattenNestedArray()
PCA(n_components=2, svd_solver='full')
StandardScaler()
['gender']
OneHotEncoder(handle_unknown='ignore')
EMRVR()